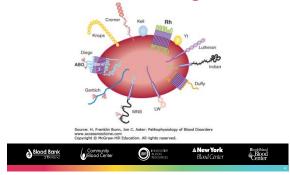
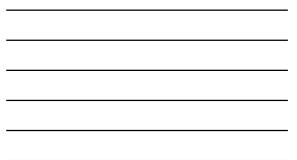


▲ New York Blood Center Enterprises

EXPANDING OUR ORGANIZATION TO MEET CLINICAL, CELLULAR AND TRANSFUSION PRODUCT AND SERVICE NEEDS FOR PATIENTS. NOW PROVIDING ALMOST ONE MILLION BLOOD PRODUCTS, OVER 450,000 LABORATORY AND MULTI-ASSAY INFECTIOUS DISEASE TESTS AND OVER 12,500 SPECIALTY CLINICAL PROCEDURES ANNUALLY TO HOSPITALS NATIONWIDE.



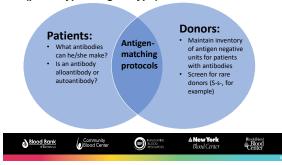

Objectives

- List reasons why it might be helpful to know extended antigen profiles on patients and donors.
- Compare and contrast serologic phenotype with molecular genotype.
- Perform calculations determining probability of encountering antigen-negative donor units.

Blood Bank	Community Blood Center	INNOVATIVE ELCOD HESOLINCES	∆ New York Blood Center	Riodelsiand Blood Center	

Let's talk about antigens...

Serologic phenotype


Includes these antigens:

Correspond to clinically significant antibodies

Blood Bank	Community Blood Center	∆ New York Blood Center	Blood	

Why would we need to know extended antigen types? (phenotype OR genotype)

What's antigen-matching?

What does that mean?

- Example:
 - Patient phenotype: D+,E+,C-,c+,e+; K+,k+; Fy(a-b+); Jk(a+b+); S-,s+
 - Which antibodies can the patient make? Anti-C, anti-Fy^a, anti-S
 Give C-negative, Fy(a-), S-negative RBCs
- Some phenotypes would be much more difficult to match (Example: D-,E-,C-,K-, Fy(a-), JK(b-), S-)

Principle: Don't expose patients to antigens that their RBCs lack

Prevent alloimmunization

Community Blood Center

Blood Bank

Chronically-transfused patients Warm auto pati	antibody Daratumumab nts patients	Maybe someday All patients?
--	---	--------------------------------

▲ New York Blood Center

Blood

In the lab...

- Serologic phenotype of your own sample
- How "rare" are you?

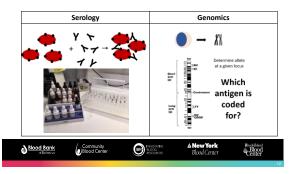
Antigen			Indian (n=3073)		Black ¹²	Chinese ¹³
Traditional	ISBT	96	95% CI	94	94	94
D	RH1	93.6	92.7.94.5	85.0***	92.0***	99.0***
C	RH2	87.0	85.8-88.2	68.0***	27.0***	93.0***
Е	RH3	20.0	18.6-21.4	29.0***	22.0***	39.0***
c	RH4	58.0	56.3-59.7	80.0***	96.0***	47.0***
e	RH5	98.0	97.5-98.5	98.0	98.0	96.0***
K	KEL1	3.5	2.9-4.1	9.0***	2.0***	0*
k	KEL2	99.97	99.9-100	99.8"	100*	100-
Fya	FY1	87.4	86.2-88.6	66.0***	10.0***	99.0***
Fyb	FY2	57.7	56.0-59.4	83.0***	23.0***	9.2***
Jka	JK1	81.4	80.0-82.8	77.0***	92.0***	73.0***
Jkb	JK2	67.6	65.9-69.3	74.0***	49.0***	76.0***
м	MNS1	88.8	87.7-89.9	78.0***	74.0***	79.7***
N	MNS2	65.4	63.7-67.1	72.0***	75.0***	67.4**
s	MNS3	54.8	53.0-56.6	55.0	31.0***	8.7***
5	MNS4	88.7	87.6.89.8	89.0	93.0***	100***

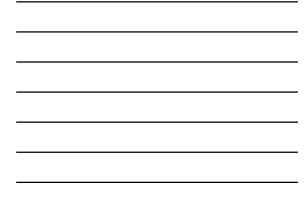
Antigen typing in the IRL

- Testing for 11 antigens

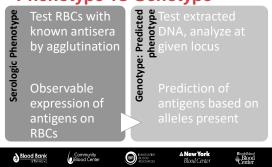
 C,E,c,e; K; Fy^a,Fy^b; Jk^a,Jk^b; S,s

 Each antisera has unique procedure
 - RT incubation
 - 37C incubation
 - IAT testing
 - For each antisera, you'll label
 - and set up 3 tubes
 Positive control
 - Negative control
 - Patient (your) RBCs


Blood Bank	Community Blood Center	BR INNOVATIVE NLOOD RESOLUTCES	& New York Blood Center	Riodelsind Blood Center	
					1


Objectives

- List reasons why it might be helpful to know extended antigen profiles on patients and donors.
- Compare and contrast serologic phenotype with molecular genotype.
- Perform calculations determining probability of encountering antigen-negative donor units.



Phenotype vs Genotype

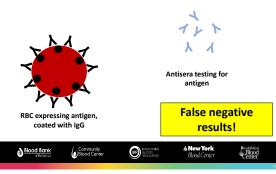
Phenotype vs Genotype

Genotype *BETTER* than a phenotype?

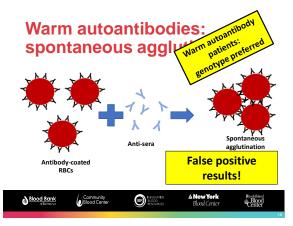
- High throughput system
- · Recently transfused patients
- Warm autos
- DARA
- Lack of antisera

Genotyping: a high throughput, low cost system

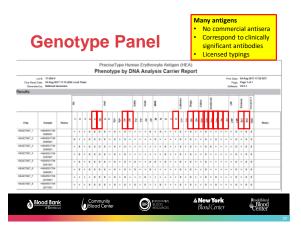
Recent Transfusion


- Serology
- Mixed field agglutination
 Unknown if patient is positive for antigen and donor is negative, or vice versa

Genotype


- Can be performed on recently transfused patients
- DNA extracted from WBCs
- DNA can also be extracted from buccal swab sample
 Blood Ba Blood Ba GenoNDe Preferred!
 Discod Center

Warm autoantibodies: Antigen-blocking



DARATUMUMAB

- Treatment for multiple myeloma (and other conditions off-label!)
 Anti-CD38
- •
- Causes weak reactivity in IAT tests One strategy: give antigen-matched units

Objectives

- · List reasons why it might be helpful to know extended antigen profiles on patients and donors.
- Compare and contrast serologic phenotype with molecular genotype.
- Perform calculations determining probability of encountering antigen-negative donor units.

Blood Bank	Community Blood Center	INNOVATIVE BLOOD RESOLUTION	& New York Blood Center	Rhode Stand Blood Center

Antigen frequency calculations

- Review material in your handbook for calculations/formulas
- How easy/difficult it is to find certain antigen combinations depends
 on donor antigen frequencies
- Pay attention to if frequencies are given for antigen-positive or antigen-negative donors

Formula fo	r percentage of compatible donors:
1.	Multiply antigen-negative prevalence for each antigen
	(Antigen frequencies are different for different ethnicities, so you really need to know the frequencies fo your specific donor population. BE CAREFUL: some charts may give you antigen positive prevalence and you'll have to subtract from 100 to find the antigen negative prevalence)
2.	Convert result into percentage (X100)

How many units would you have to screen...??

- Excellent board questions!
- Real life:
 - Blood center maintains extensive donor records (historical typings)
 - High-throughput antigen screening of donors by genotyping
 - May use donor ethnicity to screen for certain antigen combinations

Objectives

- List reasons why it might be helpful to know extended antigen profiles on patients and donors.
- Compare and contrast serologic phenotype with molecular genotype.
- Perform calculations determining probability of encountering antigen-negative donor units.

Blood Bank	Community Blood Center	INNOVATIVE BLOOD HESCURCES	& New York Blood Center	Blood	
					2

Blood Bank

